Abstract: In this paper we present a fast and accurate procedure called
clustered low rank matrix approximation for massive graphs.
The procedure involves a fast clustering of the graph and
then approximates each cluster separately using existing
methods, e.g., the singular value decomposition, or stochastic algorithms. The cluster-wise approximation are then extended to approximate the entire graph. This approach
has several benets: (1) important community structure of the graph is preserved due to the clustering; (2) highly accurate low rank approximations are achieved; (3) the procedure is ecient both in terms of computational speed and memory usage; (4) better performance in problems from various
applications compared to standard low rank approximation.
Further, we generalize stochastic algorithms to the clustered
low rank approximation framework and present theoretical
bounds for the approximation error. Finally, a set of experiments, using large scale and real-world graphs, show that
our methods outperform standard low rank matrix approximation algorithms.
Download: pdf
Citation
- Clustered Low Rank Approximation of Graphs in Information Science Applications (pdf, software)
B. Savas, I. Dhillon.
In SIAM International Conference on Data Mining (SDM), pp. 164-175, April 2011.
Bibtex: