Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent

Ian En-Hsu Yen, Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar, Inderjit Dhillon

Abstract:   Over the past decades, Linear Programming(LP) has been widely used in different areas and considered as one of the mature technologies in numerical optimization. However, the complexity offered by state-of-the-art algorithms (i.e. interior-point method and primal, dual simplex methods) is still unsatisfactory for problems in machine learning with huge number of variables and constraints. In this paper, we investigate a general LP algorithm based on the combination of Augmented Lagrangian and Coordinate Descent (AL-CD), giving an iteration complexity of O((log(1/eps))^2) with O(nnz(A)) cost per iteration, where nnz(A) is the number of non-zeros in the m×n constraint matrix A, and in practice, one can further reduce cost per iteration to the order of non-zeros in columns (rows) corresponding to the active primal (dual) variables through an active-set strategy. The algorithm thus yields a tractable alternative to standard LP methods for large-scale problems of sparse solutions and nnz(A)

Download: pdf, code

Citation

  • Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent (pdf, software, code)
    I. Yen, K. Zhong, C. Hsieh, P. Ravikumar, I. Dhillon.
    In Neural Information Processing Systems (NIPS), December 2015.

    Bibtex: