Abstract: Metric nearness refers to the problem of optimally restoring metric properties to
distance measurements that happen to be nonmetric due to measurement errors or otherwise. Metric
data can be important in various settings, for example, in clustering, classification, metric-based
indexing, query processing, and graph theoretic approximation algorithms. This paper formulates
and solves the metric nearness problem: Given a set of pairwise dissimilarities, find a “nearest” set
of distances that satisfy the properties of a metric—principally the triangle inequality. For solving
this problem, the paper develops efficient triangle fixing algorithms that are based on an iterative
projection method. An intriguing aspect of the metric nearness problem is that a special case turns
out to be equivalent to the all pairs shortest paths problem. The paper exploits this equivalence and
develops a new algorithm for the latter problem using a primal-dual method. Applications to graph
clustering are provided as an illustration. We include experiments that demonstrate the computational
superiority of triangle fixing over general purpose convex programming software. F
Download: pdf
Citation
- The Metric Nearness Problem (pdf, software)
J. Brickell, I. Dhillon, S. Sra, J. Tropp.
SIAM Journal of Matrix Analysis and Applications (SIMAX) 30(1), pp. 375-396, April 2008.
Bibtex: