Learning-based Analytical Cross-Platform Performance Prediction

Xinnian Zheng, Pradeep Ravikumar, Lizy John, Andreas Gerstlauer

Abstract:   As modern processors are becoming increasingly complex, fast and accurate performance prediction is crucial during the early phases of hardware and software co-development. To accurately and efficiently predict the performance of a given software workload is, however, a challenging problem. Traditional cycle-accurate simulation is often too slow, while analytical models are not sufficiently accurate or still require target-specific execution statistics that may be slow or difficult to obtain. In this paper, we propose a novel learning-based approach for synthesizing analytical models that can accurately predict the performance of a workload on a target platform from various performance statistics obtained directly on a host platform using built-in hardware counters. Our learning approach relies on a one-time training phase using a cycle-accurate reference of the chosen target processor. We train our models on over 15,000 program instances from the ACM-ICPC programming contest database, and demonstrate the prediction accuracy on standard benchmark suites. Result show that our approach achieves on average more than 90% accuracy at 160× the speed compared to a cycle-accurate reference simulation.

Download: pdf


  • Learning-based Analytical Cross-Platform Performance Prediction (pdf, software)
    X. Zheng, P. Ravikumar, L. John, A. Gerstlauer.
    In International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, 2015.